2017年成人高考高中起点专科本科数学试卷
发布日期:2021-08-09 来源: http://www.guodahulian.com
2017年成人高等学校高起点招生全国统一考试
数 学
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间150分钟。
第I卷(选择题,共85分)
一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= ( )
A.{2,4} B. {2,4,6} C. {1,3,5} D.{1,2,3,4.5,6}
2.函数y = 3sinx/4 的最小正周期是 ( )
A.8π B.4π C.2π D.2/3 π
3.函数y=√(x(x-1))的定义城为 ( )
A.{x| x≥0} B.{x| x≥1} C.{x|0≤x≤1} D.{x|x≤0或x≥1}
4.设a, b, c为实数,且a>b,则 ( )
A. a-c>b-c B. |a|>|b| C.〖 a〗^2>〖 b〗^2 D. ac> bc
5.若 π/2<θ<π, 且sinθ=1/3,则cosθ= ( )
A .(2√2)/3 B. – (2√2)/3 C. – √2/3 D . √2/3
6.函数y=6sinxcosx的最大值为 ( )
A.1 B.2 C.6 D.3
7.右图是二次函数y=x^2+ bx + c的部分图像,则 ( )
A. b>0,c>0 B. b>0,c<0 C. b<0,c>0 D. b<0,c<0
8.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为 ( )
A.x-y+1=0 B.x+y-5=0 C.x-y-1=0 D.x-2y+1=0
9.函数y=1/x是 ( )
A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减
C.奇函数,且在(-∞,0)单调递减 D.偶函数,且在(-∞,0)单调递增
10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )
A.60个 B.15个 C.5个 D.10个
11.若lg5=m,则lg2= ( )
A.5m B.1-m C.2m D.m+1
12.设f(x+1)=x(x+1),则f(2)= ( )
A.1 B.3 C.2 D.6
13.函数y=2^x的图像与直线x+3=0的交点坐标为 ( )
A. (-3, -1/6) B. (-3, 1/8) C. (-3,( 1)/6) D. (-3, -1/8)
14.双曲线 y^2/3 -〖 x〗^2=1的焦距为 ( )
A.1 B.4 C.2 D.√2
15.已知三角形的两个顶点是椭圆C:x^2/25+y^2/16=1的两个焦点,第三个顶点在C上,则该三角形的周长为 ( )
A.10 B.20 C.16 D.26
16.在等比数列{a_n}中,若d_3 a_4=10,则a_1 a_6,+a_2 a_5= ( )
A.100 B.40 C.10 D.20
17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )
A.1/4 B.1/3 C.1/2 D.3/4
第Ⅱ卷(非选择题,共65分)
二、填空题(本大题共4小题,每小题4分,共16分)
18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .
19.已知直线l和x-y+1=0关于直线x=-2对称,则l的斜率为= .
20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为 kg.
21.若不等式|ax+1|<2的解集为{x| -2/3 < x <( 1)/2},则a= .
三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)
22. (本小题满分12分)
设{a_n}为等差数列,且a_2+a_4-2a_1=8.
(1)求{a_n}的公差d;
(2)若a_1=2,求{a_n}前8项的和S_8.
23.(本小题满分12分)
设直线y=x+1是曲线y=x^3+3x^2+4x+a的切线,求切点坐标和a的值。
24.(本小题满分12分)
如图,AB与半径为1的圆o相切于A点,AB=3,AB与圆o的弦AC的夹角为50°.求
(1)AC:
(2)△ABC的面积.(精确到0.01)
25. (本小题满分13分)
已知关于x, y的方程x^2+y^24xsinθ-4ycosθ=0.
(1)证明:无论θ为何值,方程均表示半径为定长的圆;
(2)当θ=π/4时,判断该圆与直线y=x的位置关系.
2017年成人高等学校高起点招生全国统一考试
数学(理工农医类)答案及评分参考
一、选择题
1.A 2.A 3.D 4.A 5.B 6.D 7.A 8.C 9.C 10.D 11.B 12.C 13.B 14.B 15.C 16.D 17.A
二、填空题
18. (-4,13) 19. -1 20. 0.82 21. 2
三、解答题
22.因为{a_n}为等差数列,所以
(1)a_2+a_4-2a_1=a_1+d+a_1+3d-2a_1
=4d=8,
d=2.
(2)s_8=na1+(n(n-1))/2 d
=2×8+(8×(8-1))/2×2
=72.
23.因为直线y=x+1是曲线的切线,所以y'=3x^2+6x+4=1.解得x=-1.
当x=-1时,y=0,
即切点坐标为(-1,0).
故0=〖(-1)〗^3+3×〖(-1)〗^2+4×(-1)+a=0
解得a=2.
24.(1)连结OA,作OD⊥AC于D.
因为AB与圆相切于A点,所以∠OAB=90°. C
则∠0AC=90°=50°-40°.
AC=2AD
=2OA·cos∠OAC D
=2cos〖40°〗≈1.54. A B
(2)S△ABC=1/2AB·ACsin∠BAC
=1/2×3×2 cos〖40°×sin〖50°〗 〗
=3os240°
=l.78.
25. (1)证明:
化简原方程得
X2+4xsinθ+4sin2θ+y2-4ycosθ+4〖cos〗^2 θ-4sin2θ-4〖cos〗^2 θ=0,
(36+2sinθ)2+(y-2cosθ)2=4,
所以,无论θ为何值,方程均表示半径为2的圆。
(2)当θ=π/4时,该圆的圆心坐标为O(-√2, √2).
圆心O到直线y=x的距离
d=(1-√2-√2)/√2=2=r.
即当θ=π/4时,圆与直线y=x相切.